Multi-objective control engineering benchmark
نویسندگان
چکیده
منابع مشابه
Multi-Objective Benchmark Studies for Evolutionary Computation
During the past few decades, many global optimisation and multi-objective evolutionary algorithms (MOEAs) have been developed. Those algorithms have shown very useful in enabling system design automation and globally accurate modelling. However, there is a lack of systematic benchmark measures that may be used to assess the merit and performance of these algorithms [1],[2],[3],[7],[8]. Such ben...
متن کاملMulti-objective Optimization and its Engineering Applications
Many practical optimization problems usually have several conflicting objectives. In those multi-objective optimization, no solution optimizing all objective functions simultaneously exists in general. Instead, Pareto optimal solutions, which are “efficient” in terms of all objective functions, are introduced. In general we have many Pareto optimal solutions. Therefore, we need to decide a fina...
متن کاملMulti-Stage Fuzzy Load Frequency Control Based on Multi-objective Harmony Search Algorithm in Deregulated Environment
A new Multi-Stage Fuzzy (MSF) controller based on Multi-objective Harmony Search Algorithm (MOHSA) is proposed in this paper to solve the Load Frequency Control (LFC) problem of power systems in deregulated environment. LFC problem are caused by load perturbations, which continuously disturb the normal operation of power system. The objectives of LFC are to mini small size the transient deviati...
متن کاملModel-Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark
Within the last 10 years, many model-based multi-objective optimization algorithms have been proposed. In this paper, a taxonomy of these algorithms is derived. It is shown which contributions were made to which phase of the MBMO process. A special attention is given to the proposal of a set of points for parallel evaluation within a batch. Proposals for four different MBMO algorithms are prese...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2138